PRIMARY ELEMENTS AND PRIME POWER ELEMENTS IN MULTIPLICATIVE LATTICES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Elements of Prime Power Index

The index [G:g] of the element g in the [finite] group G is the number of elements conjugate to g in G. The significance of elements of prime power index is best recognized once one remembers Wielandt's Theorem that elements whose order and index are powers of the same prime p are contained in a normal subgroup of order a power of p and Burnside's Theorem asserting the absence of elements of pr...

متن کامل

Group Elements of Prime Power Index

The index [G:g] of the element g in the [finite] group G is the number of elements conjugate to g in G. The significance of elements of prime power index is best recognized once one remembers Wielandt's Theorem that elements whose order and index are powers of the same prime p are contained in a normal subgroup of order a power of p and Burnside's Theorem asserting the absence of elements of pr...

متن کامل

σ-sporadic prime ideals and superficial elements

Let $A$ be a Noetherian ring, $I$ be an ideal of $A$ and $sigma$ be a semi-prime operation, different from the identity map on the set of all ideals of $A$. Results of Essan proved that the sets of associated prime ideals of $sigma(I^n)$, which denoted by $Ass(A/sigma(I^n))$, stabilize to $A_{sigma}(I)$. We give some properties of the sets $S^{sigma}_{n}(I)=Ass(A/sigma(I^n))setminus A_{sigma}(I...

متن کامل

Primes, coprimes and multiplicative elements

The purpose of this paper is to study conditions under which the restriction of a certain Galois connection on a complete lattice yields an isomorphism from a set of prime elements to a set of coprime elements. An important part of our study involves the set on which the way-below relation is multiplicative.

متن کامل

Elastic Properties and Prime Elements

In a commutative, cancellative, atomic monoid M , the elasticity of a non-unit x is defined to be ρ(x) = L(x)/l(x), where L(x) is the supremum of the lengths of factorizations of x into irreducibles and l(x) is the corresponding infimum. The elasticity ρ(M) of M is given as the supremum of the elasticities of the nonzero non-units in the domain. We call ρ(M) accepted if there exists a non-unit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 1996

ISSN: 2073-9826,0049-2930

DOI: 10.5556/j.tkjm.27.1996.4348